Internal Tibial Forces and Moments During Graded Running.

Thumbnail Image
Date
2021-07-28
Authors
Baggaley, Michael
Derrick, Timothy
Vernillo, Gianluca
Edwards, W. Brent
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Derrick, Timothy
Professor
Research Projects
Organizational Units
Organizational Unit
Kinesiology
The Department of Kinesiology seeks to provide an ample knowledge of physical activity and active living to students both within and outside of the program; by providing knowledge of the role of movement and physical activity throughout the lifespan, it seeks to improve the lives of all members of the community. Its options for students enrolled in the department include: Athletic Training; Community and Public Health; Exercise Sciences; Pre-Health Professions; and Physical Education Teacher Licensure. The Department of Physical Education was founded in 1974 from the merger of the Department of Physical Education for Men and the Department of Physical Education for Women. In 1981 its name changed to the Department of Physical Education and Leisure Studies. In 1993 its name changed to the Department of Health and Human Performance. In 2007 its name changed to the Department of Kinesiology. Dates of Existence: 1974-present. Historical Names: Department of Physical Education (1974-1981), Department of Physical Education and Leisure Studies (1981-1993), Department of Health and Human Performance (1993-2007). Related Units: College of Human Sciences (parent college), College of Education (parent college, 1974 - 2005), Department of Physical Education for Women (predecessor) Department of Physical Education for Men
Journal Issue
Is Version Of
Versions
Series
Department
Kinesiology
Abstract

The stress experienced by the tibia has contributions from the forces and moments acting on the tibia. We sought to quantify the influence of running grade on internal tibial forces and moments. Seventeen participants ran at 3.33 m/s on an instrumented treadmill at 0°, ±5°, and ±10° while motion data were captured. Ankle joint contact force was estimated from an anthropometrically-scaled musculoskeletal model using inverse dynamics-based static optimization. Internal tibial forces and moments were quantified at the distal 1/3rd of the tibia, by ensuring static equilibrium with all applied forces and moments. Downhill running conditions resulted in lower peak internal axial force (range of mean differences: -9 to -16%, p<0.001), lower peak internal anteroposterior force (-14 to -21%, p<0.001), and lower peak internal mediolateral force (-14 to -15%, p<0.001), compared to 0° and +5°. Furthermore, downhill conditions resulted in lower peak internal mediolateral moment (-11 to -21%, p<0.001), lower peak internal anteroposterior moment (-13 to -14%, p<0.001), and lower peak internal torsional moment (-9 to -21%, p<0.001), compared to 0°, +5°, and +10°. The +10° condition resulted in lower peak internal axial force (-7 to -9%, p<0.001) and lower peak internal mediolateral force (-9%, p=0.004), compared to 0° and +5°. These findings suggest that downhill running may be associated with lower tibial stresses than either level or uphill running.

Comments

This accepted article is published as Bagaley, M., Derrick, T.R., Vernillo, G., Millet, G.Y., Edwards, W.B., Internal Tibial Forces and Moments During Graded Running. Journal of Biomechanical Engineering. July 28 2021. Paper No: BIO-21-1180;Doi: 10.1115/1.4051924. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections