Campus Units

Mathematics, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

12-2001

Journal or Book Title

Physical Review E

Volume

65

Issue

1

First Page

016121-1

Last Page

016121-8

DOI

10.1103/PhysRevE.65.016121

Abstract

We present lattice-gas modeling of the steady-state behavior in CO oxidation on the facets of nanoscale metal clusters, with coupling via interfacet CO diffusion. The model incorporates the key aspects of the reaction process, such as rapid CO mobility within each facet and strong nearest-neighbor repulsion between adsorbed O. The former justifies our use of a “hybrid” simulation approach treating the CO coverage as a mean-field parameter. For an isolated facet, there is one bistable region where the system can exist in either a reactive state (with high oxygen coverage) or a (nearly CO-poisoned) inactive state. Diffusion between two facets is shown to induce complex multistability in the steady states of the system. The bifurcation diagram exhibits two regions with bistabilities due to the difference between adsorption properties of the facets. We explore the role of enhanced fluctuations in the proximity of a cusp bifurcation point associated with one facet in producing transitions between stable states on that facet, as well as their influence on fluctuations on the other facet. The results are expected to shed more light on the reaction kinetics for supported catalysts.

Comments

This article is from Physical Review E 65 (2002): 016121, doi:10.1103/PhysRevE.65.016121. Posted with permission.

Copyright Owner

American Physical Society

Language

en

File Format

application/pdf

Share

COinS