Campus Units

Mathematics

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

2018

Journal or Book Title

arXiv

Abstract

The distance matrix D(G) of a graph G is the matrix containing the pairwise distances between vertices, and the distance Laplacian matrix is DL(G)=T(G)−D(G), where T(G) is the diagonal matrix of row sums of D(G). We establish several general methods for producing DL-cospectral graphs that can be used to construct infinite families. We provide examples showing that various properties are not preserved by DL-cospectrality, including examples of DL-cospectral strongly regular and circulant graphs. We establish that the absolute values of coefficients of the distance Laplacian characteristic polynomial are decreasing, i.e., |δL1|≥⋯≥|δLn| where δLk is the coefficient of xk.

Comments

This is a pre-print of the article Brimkov, Boris, Ken Duna, Leslie Hogben, Kate Lorenzen, Carolyn Reinhart, Sung-Yell Song, and Mark Yarrow. "Graphs that are cospectral for the distance Laplacian." arXiv preprint arXiv:1812.05734v1 (2018). Posted with permission.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Published Version

Share

COinS