Hybrid treatment of spatio‐temporal behavior in surface reactions with coexisting immobile and highly mobile reactants

Thumbnail Image
Date
1995-12-01
Authors
Tammaro, Michael
Sabella, M.
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMathematics
Abstract

For surface reactions on single-crystal substrates which involve highly mobile adspecies, there is a vast separation in natural time and length scales. Adspecies hop rates can be many orders of magnitude larger than rates for other processes. Strong spatial correlations or ordering can exist on the atomic scale, while spatial pattern formation occurs on a macroscopic scale due to high diffusivity. An efficient analysis of such systems is provided by a "hybrid treatment" which we apply here to the monomer-dimer surface reaction model in the case of coexisting immobile dimer adspecies and highly mobile monomer adspecies. Specifically, we combine a mean-field treatment of the "randomized" mobile adspecies, and a lattice-gas description of the immobile adspecies. Monte Carlo simulations then reveal bistability and "critical" bifurcation phenomena, while precisely accounting for the influence of correlations in the immobile adspecies distribution. A corresponding analysis of the evolution of macroscopic spatial inhomogeneities is achieved through parallel simulation of the distributed macroscopic points with distinct correlated states and adspecies coverages. These simulations are appropriately coupled to describe diffusive mass transport of the mobile adspecies. In this way, we examine for this model the propagation and structure of chemical waves, corresponding to interface between bistable reactive states, and thereby determine the relative stability of these states.

Comments

The following article appeared in Journal of Chemical Physics 103,23 (1995): 10277 and my be found at doi: 10.1063/1.469929.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 1995
Collections