Simulation of Motion Parallax for Monitor-Based Augmented Reality Applications

Thumbnail Image
Date
2013-08-01
Authors
Radkowski, Rafael
Oliver, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Oliver, James
Director-SICTR
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The paper presents a method for the simulation of motion parallax for monitor-based Augmented Reality (AR) applications. Motion parallax effects the relative movement between far and close objects: near objects appear moving faster than far objects do. This facilitates the perception of depth, distances, and the structure of geometrically complex objects. Today, industrial AR applications are equipped with monitor-based output devices, e.g., for design reviews. Thus this important depth cue is omitted because all objects appear as one even layer on screen. As a result, the assessment of complex structures becomes more difficult. The method presented in this paper utilizes depth images to create layered images: multiple images in which objects in a video image are split up with respect to their distance too a video camera. Using head tracking, the single layers are relatively moved with respect to the user’s head position. This simulates motion parallax. Virtual objects superimpose the final image to complete the AR scene. The method was prototypically realized, the results show its feasibility.

Comments

This is a conference proceeding from ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2B (2013): 1, doi:10.1115/DETC2013-13032. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013