Simulating Gas-Liquid Flows in an External Loop Airlift Reactor

Thumbnail Image
Date
2008-10-01
Authors
Law, Deify
Battaglia, Francine
Heindel, Theodore
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The external loop airlift reactor (ELALR) is a modified bubble column reactor that is composed of two vertical columns that are connected with two horizontal connectors. Airlift reactors are utilized in fermentation processes and are preferred over traditional bubble column reactors because they can operate over a wider range of conditions. Computational fluid dynamics (CFD) simulations can be used to enhance our understanding of the hydrodynamics within these reactors. In the present work, the gas-liquid flow dynamics in an external loop airlift reactor are simulated using CFDLib with an Eulerian-Eulerian ensemble-averaging method in two-dimensional (2D) and three-dimensional (3D) coordinate systems. In addition, models are employed for the interphase momentum transfer drag coefficient and turbulence behavior. The CFD simulations for temporal and spatial averaged gas holdup are compared to the experimental measurements of Jones and Heindel [1] who used a 10.2 cm diameter ELALR over a range of superficial gas velocities from 0.5 to 20 cm/s. The effect of specifying a mean bubble diameter size for the CFD modeling is examined. The objectives are to validate 2D and 3D CFD simulations with experimental data in order to predict the hydrodynamics in an airlift reactor for future studies on scale-up and design.

Comments

This is a conference proceeding from ASME 2008 International Mechanical Engineering Congress and Exposition 10 (2008): 395, doi:10.1115/IMECE2008-66379. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008