Characterization of Microscale Particles Using a Microfluidic Flow Cytometer Equipped With a Multi-Plex Photon Counter

Thumbnail Image
Date
2013-01-01
Authors
Asrar, Pouya
Hashemi, Nicole
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hashemi, Nicole
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

We have shown the design and fabrication of a microfluidic flow cytometer. The microfluidic flow cytometer has been used to characterize microspheres of different sizes. The device is consisted of a microchannel, electronics, and integrated optics. The microchannel has three inlets. Two inlets are used to introduce sheath flows and one middle inlet is assigned as sample inlet. The sample flow is hydrodynamically focused at the center of the microchannel by two side streams (sheath flows). Also arrays of four chevron grooves compress the sample flow from the top and bottom of the microchannel. The core flow contains microspheres at a certain concentration. Detection of the microspheres at the interrogation region of the channel is performed by integrated optics and electronics. The scattered light emitted from the microspheres is collected by a multi-plex photo diode (MPPC). The results are recorded using data acquisition (DAQ) unit. The MPPCs employed in the setup is the new generation of photon counter devices with an excellent detection limit, a compact size, and capability of recording data at high gain compared to previous generation of photodetectors such as photomultipliers or avalanche photon diodes. The flow cytometer was sensitive enough to collect data from 3 μm microspheres using such mentioned sensitive photon counting unit. We have also used COMSOL Multiphysics software to investigate velocity and pressure distribution as well as concentration distribution along the microchannel. The average voltage collected by MPPC was 1.9 V for 10.2 μm and 1.6 V for 3.2 μm microsphere.

Comments

This is a conference proceeding from Proceedings of the ASME 2013 Summer Bioengineering Conference 1A (2013): 1, doi:10.1115/SBC2013-14800. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013