A paper based graphene-nanocauliflower hybrid composite for point of care biosensing

Thumbnail Image
Date
2016-05-13
Authors
Sidhu, R.
Bhargava, M.
Schwalb, N.
Rong, Y.
Gomes, Carmen
Claussen, Jonathan
Vanegas, D. C.
McLamore, E. S.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Claussen, Jonathan
Associate Professor
Person
Gomes, Carmen
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 ± 0.02 μM) and E. coli O157:H7 (1.3 ± 0.1 CFU mL-1) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing.

Comments

This proceeding is published as Burrs, S.L., R. Sidhu, M. Bhargava, J. Kiernan-Lewis, N. Schwalb, Y. Rong, C. Gomes, J. Claussen, D.C. Vanegas, E.S. McLamore (2016). A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Proceedings of SPIE. Paper no. 9863 – 22, 1-7, April 17-21, 2016.doi: 10.1117/12.2223346. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016