Campus Units
Mechanical Engineering, Chemical and Biological Engineering
Document Type
Conference Proceeding
Conference
ASME 2014 Fluids Engineering Division Summer Meeting
Publication Version
Published Version
Publication Date
2014
Journal or Book Title
Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting (FEDSM2014)
Volume
1D
Issue
FEDSM2014-21048
First Page
V01DT26A001
DOI
10.1115/FEDSM2014-21048
Conference Date
August 3–7, 2014
City
Chicago, IL
Abstract
Granular mixing processes are commonly used to increase product homogeneity in many industrial applications involving pharmaceuticals, food processing, and energy conversion. Determining the appropriate granular mixing length is necessary to avoid over/under mixing and unnecessary power consumption. The goal of this study is to experimentally characterize the granular mixing process and determine, under various operating conditions, the needed mixing length to achieve adequate mixing in a laboratory-scale double screw mixer. Nine different combinations of screw rotation speeds and dimensionless screw pitches are used to investigate the rate of mixing at dimensionless mixing lengths of L/D = 2, 5, and 10. Composition and statistical analysis methods are employed to assess mixing effectiveness, and it is determined that the dimensionless mixing length is the most influential parameter in terms increasing granular homogeneity. For all the conditions tested, the granular mixture approaches an acceptable level of mixing for all testing conditions when the dimensionless mixing length is L/D = 10. However, the segregation rate throughout the screw mixer is vastly different for various combinations of screw rotation speed and dimensionless screw pitch, and is partly attributed to the influence of entrance effects caused by the material injection process.
Copyright Owner
ASME
Copyright Date
2014
Language
en
File Format
application/pdf
Recommended Citation
Kingston, Todd A. and Heindel, Theodore J., "Characterizing Granular Mixing Homogeneity at Various Dimensionless Mixing Lengths in a Double Screw Mixer" (2014). Mechanical Engineering Conference Presentations, Papers, and Proceedings. 184.
https://lib.dr.iastate.edu/me_conf/184
Comments
This is a proceeding published as Kingston, T.A., and Heindel, T.J., “Characterizing Granular Mixing Homogeneity at Various Dimensionless Mixing Lengths in a Double Screw Mixer,” Proceedings of the ASME 2014 Fluids Engineering Division Summer Meeting, August 3-7, 2014, Chicago, Illinois Paper FEDSM2014-21048, 2014. DOI: 10.1115/FEDSM2014-21048. Posted with permission.