A Virtual Reality Interface for the Design of Compliant Mechanisms

Thumbnail Image
Date
2009-08-01
Authors
Seth, Utkarsh
Su, Hai-Jun
Vance, Judy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vance, Judy
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The objective of this research is to develop an immersive interface and a design algorithm to facilitate the synthesis of compliant mechanisms from a user-centered design perspective. Compliant mechanisms are mechanical devices which produce motion or force through deflection or flexibility of their parts. Using the constraint-based method of design, the design process relies on the designer to identify the appropriate constraint sets to match the desired motion. Currently this approach requires considerable prior knowledge of how non-linear flexible members produce motion. As a result, the design process is based primarily on the designer’s previous experience and intuition. A user-centered methodology is suggested where the interface guides the designer throughout the design process, thus reducing the reliance on intuitive knowledge. This methodology supports constraint-based design methods by linking mathematical models to support compliant mechanism design in an immersive virtual environment. A virtual reality (VR) immersive interface enables the designer to input the intended motion path by simply grabbing and moving the object and letting the system decide which constraint spaces apply. The user-centered paradigm supports an approach that focuses on the designer defining the motion and the system generating the constraint sets, instead of the current method which relies heavily on the designer’s intuition to identify appropriate constraints. The result is an intelligent design framework that will allow a broader group of engineers to design complex compliant mechanisms, giving them new options to draw upon when searching for design solutions to critical problems.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2009