Document Type
Conference Proceeding
Conference
Optical Metrology and Inspection for Industrial Applications
Publication Date
10-2010
DOI
10.1117/12.870715
City
Beijing, China
Abstract
This paper analyzes the phase error for a 3-D shape measurement system that utilizes our recently proposed projector defocusing technique. In this technique, by defocusing binary structured patterns, seemingly sinusoidal ones can be generated, and 3-D shape measurement can be performed by fringe analysis. However, there are still significant errors if the object is not within a certain depth range where the defocused fringe patterns still have binary structures. In this research, we experimentally studied a large depth range of defocused fringe patterns, from close to be binary to to be sinusoidal, and its associated phase errors are analyzed. We established a mathematical phase error function in terms of the wrapped phase and the depth z. Finally, the mathematical function is calibrated and is used to compensate for the phase error at arbitrary depth ranges within the calibration volume. Experiment will be presented to demonstrate the success of this proposed technique.
Copyright Owner
Society of Photo-Optical Instrumentation Engineers
Copyright Date
2010
Language
en
Recommended Citation
Xu, Ying; Dai, Junfei; and Zhang, Song, "Error analysis for 3D shape measurement with projector defocusing" (2010). Mechanical Engineering Conference Presentations, Papers, and Proceedings. 80.
https://lib.dr.iastate.edu/me_conf/80
Included in
Computer-Aided Engineering and Design Commons, Graphics and Human Computer Interfaces Commons
Comments
This is a conference proceeding from Optical Metrology and Inspection for Industrial Applications 7855 (2010): 1, doi:10.1117/12.870715. Posted with permission.
Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.