Title
Chip Segmentation in Machining: A Study of Deformation Localization Characteristics in Ti6Al4V
Document Type
Conference Proceeding
Conference
ASME 2013 International Manufacturing Science and Engineering Conference
Publication Date
6-2013
DOI
10.1115/MSEC2013-1070
City
Madison, WI
Abstract
Chip segmentation by deformation localization is an important process in a certain range of velocities and might be desirable in reducing cutting forces and by improving chips’ evacuation, whereas few studies of practical criteria to calculate shear band spacing are available in literature. This paper extends nonlinear dynamics model for chip segmentation by allowing time varying orientation of the shear plane that are pronounced in strain hardening materials. The model extends the non-linear dynamics approach with additional state variables to the Burns and Davies approach. The model is simulated numerically to predict the shear bands of the chip. The numerical simulation of the model is compared with experimental observations and is in agreement with experimental observations in Ti6Al4V. This offers guidance to predict shear band spacing of other materials.
Copyright Owner
ASME
Copyright Date
2013
Language
en
Recommended Citation
Chandra, Abhijit; Karra, Pavan; Bragg, Adam; Wang, Jie; and Kim, Gap-Yong, "Chip Segmentation in Machining: A Study of Deformation Localization Characteristics in Ti6Al4V" (2013). Mechanical Engineering Conference Presentations, Papers, and Proceedings. 89.
https://lib.dr.iastate.edu/me_conf/89
Included in
Manufacturing Commons, Metallurgy Commons, Statistical, Nonlinear, and Soft Matter Physics Commons
Comments
This is a conference proceeding from ASME 2013 International Manufacturing Science and Engineering Conference 1 (2013): doi:10.1115/MSEC2013-1070. Posted with permission.