Document Type
Article
Publication Date
12-1-2011
Journal or Book Title
Journal of Manufacturing Science and Engineering
Volume
133
Issue
6
First Page
1
Last Page
8
DOI
10.1115/1.4004612
Abstract
Micro/mesoscale forming is a promising technology for mass production of miniature metallic parts. However, fabrication of micro/mesoscale features leads to challenges due to the friction increase at the interface and tool wear from highly localized stress. In this study, the use of high-frequency vibration for potential application in micro/mesoscale forming has been investigated. A versatile experimental setup based on a magnetostrictive (Terfenol-D) actuator was built. Vibration assisted micro/mesoscale upsetting, pin extrusion and cup extrusion were conducted to understand the effects of workpiece size, excitation frequency, and the contact condition. Results showed a change in load reduction behavior that was dependent on the excitation frequency and the contact condition. The load reduction exhibited in this study can be explained by a combination of stress superposition and friction reduction. It was found that a higher excitation frequency and a less complicated die-specimen interface were more likely to result in a friction reduction by high-frequency vibration.
Copyright Owner
ASME
Copyright Date
2011
Language
en
File Format
application/pdf
Recommended Citation
Yao, Zhehe; Kim, Gap-Yong; Faidley, LeAnn E.; Zou, Qingze; Mei, Deqing; and Chen, Zichen, "Experimental Study of High-Frequency Vibration Assisted Micro/Mesoscale Forming of Metallic Materials" (2011). Mechanical Engineering Publications. 117.
https://lib.dr.iastate.edu/me_pubs/117
Comments
This article is from Journal of Manufacturing Science and Engineering 133 (2011): 1, doi:10.1115/1.4004612. Posted with permission.