A Microfluidic Reactor for Energy Applications

Thumbnail Image
Date
2012-11-01
Authors
Wagner, Luke
Yang, Jie
Ghobadian, Susan
Montazami, Reza
Hashemi, Nicole
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hashemi, Nicole
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Miniature microbial fuel cells have recently drawn lots of attention as portable power generation devices due to their short startup time and environmentally-friendly process which could be used for powering small integrated biosensors. We designed and fabricated a microbial fuel cell in a microfluidic platform. The device was made in polydimethylsiloxane with a volume of 4 μL and consisted of two carbon cloth electrodes and proton exchange membrane. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacterial strain and inoculated into the anode chamber. Ferricyanide was used as the catholyte and pumped into the cathode chamber at a constant flow rate during the experiment. The mi- niature microbial fuel cell generated a maximum current of 2.59 μA and had a significantly short startup time.

Comments

This article is from Open Journal of Applied Biosensor 1 (2012): 21, doi:10.4236/ojab.2012.13003. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections