Process optimization for microstructure-dependent properties in thin film organic electronics

Thumbnail Image
Date
2018-07-03
Authors
Pfeifer, Spencer
Pokuri, Balaji Sesha Sarath
Du, Pengfei
Ganapathysubramanian, Baskar
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical EngineeringElectrical and Computer EngineeringPlant Sciences Institute
Abstract

The processing conditions during solvent-based fabrication of thin film organic electronics significantly determine the ensuing microstructure. The microstructure, in turn, is one of the key determinants of device performance. In recent years, one of the foci in organic electronics has been to identify processing conditions for enhanced performance. This has traditionally involved either trial-and-error exploration, or a parametric sweep of a large space of processing conditions, both of which are time and resource intensive. This is especially the case when the process → structure and structure → property simulators are computationally expensive to evaluate.

In this work, we integrate an adaptive-sampling based, gradient-free, Bayesian optimization routine with a phase-field morphology evolution framework that models solvent-based fabrication of thin film polymer blends (process → structure simulator) and a graph-based morphology characterization framework that evaluates the photovoltaic performance of a given morphology (structure → property simulator). The Bayesian optimization routine adaptively adjusts the processing parameters to rapidly identify optimal processing configurations, thus reducing the computational effort in processstructureproperty explorations. This serves as a modular, parallel ‘wrapper’ framework that facilitates swapping-in other process simulators and device simulators for general process → structure → property optimization. We showcase this framework by identifying two processing parameters, the solvent evaporation rate and the substrate patterning wavelength, in a model system that results in a device with enhanced photovoltaic performance evaluated as the short-circuit current of the device. The methodology presented here provides a modular, scalable and extensible approach towards the rational design of tailored microstructures with enhanced functionalities.

Comments

This is a manuscript of an article published as Pfeifer, Spencer, Balaji Sesha Sarath Pokuri, Pengfei Du, and Baskar Ganapathysubramanian. "Process optimization for microstructure-dependent properties in thin film organic electronics." Materials Discovery (2018). doi: 10.1016/j.md.2018.06.002. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections