Campus Units

Mechanical Engineering

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

8-1-2018

Journal or Book Title

ACS Applied Materials & Interfaces

DOI

10.1021/acsami.8b08997

Abstract

Free-standing, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 µm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating at a low potential of -0.2 V vs. Ag/AgCl. As a comparison, enzymatic VACNT sensors with platinum nano-urchins were functionalized with glucose oxidase by covalent binding (EDC/NHS) or by polymer entrapment (PEDOT) and operated in phosphate buffered saline (PBS). With normalization by the overall cross-sectional area of the flow (0.713 cm2), the sensitivity of the MV, enzyme-in-solution, and covalent sensors were 45.93, 18.77, and 1.815 mA cm-2 mM-1, respectively. Corresponding limits of detection were 100, 194, and 311 nM glucose. The linear sensing ranges for the sensors were: 250 nM – 200 µM glucose for the MV sensor, 500 nM – 200 µM glucose for the enzyme-in-solution sensor, and 1 µM – 6 mM glucose for the covalent sensor. The flow cell and sensor cross-sectional area were scaled down (0.020 cm2) to enable detection from 200 µL of glucose with MV by flow injection analysis (FIA). The sensitivity of the small MV sensor was 5.002 mA cm-2 mM-1, with a limit of detection of 360 nM glucose and a linear range up to at least 150 µM glucose. The small MV sensor has the potential to measure glucose levels found in 200 µL of saliva.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.html.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Published Version

Share

COinS