Campus Units

Mechanical Engineering

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

6-6-2018

Journal or Book Title

Journal of Biomechanics

Volume

74

First Page

23

Last Page

31

DOI

10.1016/j.jbiomech.2018.04.012

Abstract

This paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee–Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid–structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee–Sacks model is well-suited to reproduce the anisotropic stress–strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee–Sacks model that matches biaxial stress–strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee–Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.

Comments

This is a manuscript of an article published as Wu, Michael C.H., Rana Zakerzadeh, David Kamensky, Josef Kiendl, Michael S. Sacks, and Ming-Chen Hsu. "An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves." Journal of Biomechanics 74 (2018): 23-31. DOI: 10.1016/j.jbiomech.2018.04.012. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

Elsevier Ltd.

Language

en

File Format

application/pdf

Available for download on Thursday, June 06, 2019

Published Version

Share

COinS