Campus Units
Mechanical Engineering
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
6-6-2018
Journal or Book Title
Journal of Biomechanics
Volume
74
First Page
23
Last Page
31
DOI
10.1016/j.jbiomech.2018.04.012
Abstract
This paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee–Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid–structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee–Sacks model is well-suited to reproduce the anisotropic stress–strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee–Sacks model that matches biaxial stress–strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee–Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Copyright Owner
Elsevier Ltd.
Copyright Date
2018
Language
en
File Format
application/pdf
Recommended Citation
Wu, Michael C.H.; Zakerzadeh, Rana; Kamensky, David; Kiendl, Josef; Sacks, Michael S.; and Hsu, Ming-Chen, "An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves" (2018). Mechanical Engineering Publications. 301.
https://lib.dr.iastate.edu/me_pubs/301
Included in
Biomechanical Engineering Commons, Biomechanics and Biotransport Commons, Biomedical Devices and Instrumentation Commons
Comments
This is a manuscript of an article published as Wu, Michael C.H., Rana Zakerzadeh, David Kamensky, Josef Kiendl, Michael S. Sacks, and Ming-Chen Hsu. "An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves." Journal of Biomechanics 74 (2018): 23-31. DOI: 10.1016/j.jbiomech.2018.04.012. Posted with permission.