Fiber Based Approaches as Medicine Delivery Systems

Thumbnail Image
Date
2016-01-01
Authors
Sharifi, Farrokh
Sooriyarachchi, Avinash
Altural, Hayriye
Montazami, Reza
Rylander, Marissa
Hashemi, Nicole
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hashemi, Nicole
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical EngineeringCenter for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine
Abstract

The goal of drug delivery is to ensure that therapeutic molecules reach the intended target organ or tissue, such that the effectiveness of the drug is maximized. The efficiency of a drug delivery system greatly depends on the choice of drug carrier. Recently, there has been growing interest in using micro- and nanofibers for this purpose. The reasons for this growing interest include these materials’ high surface area to volume ratios, ease of fabrication, high mechanical properties, and desirable drug release profile. Here, we review developments in using these materials made by the most prevalent methods of fiber fabrication: electrospinning, microfluidics, wet spinning, rotary spinning, and self-assembly for drug delivery purposes. Additionally, we discuss the potential to use these fiber based systems in research and clinical applications.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Biomaterials Science and Engineering, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acsbiomaterials.6b00281. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections