Campus Units

Mechanical Engineering, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

5-2018

Journal or Book Title

Ultrasonics Sonochemistry

Volume

43

First Page

114

Last Page

119

DOI

10.1016/j.ultsonch.2018.01.006

Abstract

We report a study on two methods that enable spatial control and induced cavitation on targeted microbubbles (MBs). Cavitation is known to be present in many situations throughout nature. This phenomena has been proven to have the energy to erode alloys, like steel, in propellers and turbines. It is recently theorized that cavitation occurs inside the skull during a traumatic-brain injury (TBI) situation. Controlled cavitation methods could help better understand TBIs and explain how neurons respond at moments of trauma. Both of our approaches involve an ultrasonic transducer and bio-compatible Polycaprolactone (PCL) microfibers. These methods are reproducible as well as affordable, providing more control and efficiency compared to previous techniques found in literature. We specifically model three-dimensional spatial control of individual MBs using a 1.6 MHz transducer. Using a 100 kHz transducer, we also illustrate induced cavitation on an individual MB that is adhered to the surface of a PCL microfiber. The goal of future studies will involve characterization of neuronal response to cavitation and seek to unmask its linkage with TBIs.

Comments

This is a manuscript of an article published as Wrede, Alex H., Aarthy Shah, Marilyn C. McNamara, Reza Montazami, and Nicole N. Hashemi. "Controlled positioning of microbubbles and induced cavitation using a dual-frequency transducer and microfiber adhesion techniques." Ultrasonics Sonochemistry 43 (2018): 114-119. DOI: 10.1016/j.ultsonch.2018.01.006. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

Elsevier B.V.

Language

en

File Format

application/pdf

Available for download on Sunday, January 05, 2020

Published Version

Share

COinS