Campus Units

Mechanical Engineering, Electrical and Computer Engineering, Plant Sciences Institute

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

6-4-2019

Journal or Book Title

arXiv

Abstract

Reliable training of generative adversarial networks (GANs) typically require massive datasets in order to model complicated distributions. However, in several applications, training samples obey invariances that are \textit{a priori} known; for example, in complex physics simulations, the training data obey universal laws encoded as well-defined mathematical equations. In this paper, we propose a new generative modeling approach, InvNet, that can efficiently model data spaces with known invariances. We devise an adversarial training algorithm to encode them into data distribution. We validate our framework in three experimental settings: generating images with fixed motifs; solving nonlinear partial differential equations (PDEs); and reconstructing two-phase microstructures with desired statistical properties. We complement our experiments with several theoretical results.

Comments

This is a pre-print of the article Shah, Viraj, Ameya Joshi, Sambuddha Ghosal, Balaji Pokuri, Soumik Sarkar, Baskar Ganapathysubramanian, and Chinmay Hegde. "Encoding Invariances in Deep Generative Models." arXiv preprint arXiv:1906.01626 (2019). Posted with permission.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Published Version

Share

COinS