Spherical Mechanism Synthesis in Virtual Reality

Thumbnail Image
Date
1999-12-01
Authors
Furlong, T.
Vance, Judy
Larochelle, Pierre
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vance, Judy
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

This paper presents a new approach to using virtual reality (VR) to design spherical mechanisms. VR provides a three-dimensional (3-D) design space where a designer can input design positions using a combination of hand gestures and motions and view the resultant mechanism in stereo using natural head movement to change the viewpoint. Because of the three-dimensional nature of the design and verification of spherical mechanisms, VR is examined as a new design interface in this research. In addition to providing a VR environment for design, the research presented in this paper has focused on developing a “design in context” approach to spherical mechanism design. Previous design methods have involved placing coordinate frames along the surface of a constraint sphere. The new “design in context” approach allows a designer to freely place geometric models of movable objects inside an environment consisting of fixed objects. The fixed objects could either act as a base for a mechanism or be potential sources of interference with the motion of the mechanism. This approach allows a designer to perform kinematic synthesis of a mechanism while giving consideration to the interaction of that mechanism with its application environment.

Comments

This article is from Journal of Mechanical Design 121 (1999): 515–520, doi:10.1115/1.2829491. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 1999
Collections