Campus Units
Mechanical Engineering, Electrical and Computer Engineering, Plant Sciences Institute
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
2-22-2020
Journal or Book Title
Renewable Energy
DOI
10.1016/j.renene.2020.02.071
Abstract
Traditionally, energy recovery from low-solid-content wastes occurs in Continuously Stirred Tank Reactors, whereas Plug Flow Reactors (PFR) are used to treat high-solid-content wastes. In comparison, this study uses a special configuration of anaerobic PFR (AnPFR), consisting of a coiled tubular structure, for energy recovery from a mixture of Food Waste and Wastewater, fed at a loading rate of 3 gVS.L−1.d−1 and a solids content of 2.5%. The AnPFR was upgraded into a Flow Sculpting enabled Anaerobic Digester (FSAD), an innovative plug flow design relying on flow sculpting via a sequence of pillars to provide passive mixing. The purpose of the FSAD design is to optimize operational performance while maintaining minimum mixing energy requirements. Computational fluid dynamics simulations revealed that pillars induce local vorticity in the fluid and contribute to the inertial deformation of the flow to enhance mixing. Coherently, experimental results proved that upgrading the AnPFR to FSAD resulted in a better stability (VFA dropped from 4433 to 2034 mg L−1) and a higher efficiency (removal efficiencies of COD and volatile solids increased from 75% to 77%–88% and 91%, respectively). Equally important, the methane yield, indicative of energy generation potential, increased from 181 L kg VSfed−1 to 291 L kg VSfed−1.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Copyright Owner
Elsevier Ltd.
Copyright Date
2020
Language
en
File Format
application/pdf
Recommended Citation
Ghanimeh, Sophia; Abou Khalil, Charbel; Stoecklein, Daniel; Kommasojula, Aditya; and Ganapathysubramanian, Baskar, "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste" (2020). Mechanical Engineering Publications. 408.
https://lib.dr.iastate.edu/me_pubs/408
Comments
This is a manuscript of an article published as Ghanimeh, Sophia, Charbel Abou Khalil, Daniel Stoecklein, Aditya Kommasojula, and Baskar Ganapathysubramanian. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste." Renewable Energy (2020). DOI: 10.1016/j.renene.2020.02.071. Posted with permission.