Gas Holdup and Flow Regime in a Bubble Column that Includes Enhanced Oil Recovery Chemicals

Thumbnail Image
Date
2021-03-12
Authors
Orlando, Aloisio
Barca, Luiz
Heindel, Theodore
Klein, Tania
Medronho, Ricardo
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Mechanical EngineeringChemical and Biological Engineering
Abstract

Chemical enhanced oil recovery (EOR) methods are alternatives to increase oil production in mature reservoirs. However, the presence of EOR chemicals in the produced water may impact the separation of gas-water systems in oil platforms. The present work aims to evaluate the impact of polymers, surfactants, inorganic salts, and their interactions on gas holdup in a 32.1-cm-diameter semi-batch bubble column over a range of superficial gas velocities ranging from 0 to 19 cm/s. It has been confirmed through physical-chemical analysis that synthetic produced water containing salts, polymers and organic surfactants is non-Newtonian with low surface tension. Results have shown that both salt and surfactants increase gas holdup regardless of superficial gas velocity, while the effect of polymers depends on superficial gas velocity. This work also innovates by showing how interactions between EOR chemicals and salinity affect transition gas holdup and superficial gas velocity between different flow regimes. Overall results shed some light on how the chemical composition of EOR effluents affect gas holdup and flow regime as a function of a wide range of superficial gas velocities and therefore contributes to the development of gas-liquid systems.

Comments

This is a manuscript of an article published as Orlando Jr, Aloisio E., Luiz F. Barca, Theodore J. Heindel, Tania S. Klein, and Ricardo A. Medronho. "Gas Holdup and Flow Regime in a Bubble Column that Includes Enhanced Oil Recovery Chemicals." Journal of Petroleum Science and Engineering (2021): 108675. DOI: 10.1016/j.petrol.2021.108675. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections