Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves

Thumbnail Image
Date
2021-10-01
Authors
Johnson, Emily
Laurence, Devin
Xu, Fei
Crisp, Caroline
Mir, Arshid
Burkhart, Harold
Lee, Chung-Hao
Hsu, Ming-Chen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hsu, Ming-Chen
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Approximately 1.6 million patients in the United States are affected by tricuspid valve regurgitation, which occurs when the tricuspid valve does not close properly to prevent backward blood flow into the right atrium. Despite its critical role in proper cardiac function, the tricuspid valve has received limited research attention compared to the mitral and aortic valves on the left side of the heart. As a result, proper valvular function and the pathologies that may cause dysfunction remain poorly understood. To promote further investigations of the biomechanical behavior and response of the tricuspid valve, this work establishes a parameter-based approach that provides a template for tricuspid valve modeling and simulation. The proposed tricuspid valve parameterization presents a comprehensive description of the leaflets and the complex chordae tendineae for capturing the typical three-leaflet structural deformation observed from medical data. This simulation framework develops a practical procedure for modeling tricuspid valves and offers a robust, flexible approach to analyze the performance and effectiveness of various valve configurations using isogeometric analysis. The proposed methods also establish a baseline to examine the tricuspid valve’s structural deformation, perform future investigations of native valve configurations under healthy and disease conditions, and optimize prosthetic valve designs.

Comments

This is a manuscript of an article published as Johnson, Emily L., Devin W. Laurence, Fei Xu, Caroline E. Crisp, Arshid Mir, Harold M. Burkhart, Chung-Hao Lee, and Ming-Chen Hsu. "Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves." Computer Methods in Applied Mechanics and Engineering 384 (2021): 113960. DOI: 10.1016/j.cma.2021.113960. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections