Effects of Mixing Using Side Port Air Injection on a Biomass Fluidized Bed

Thumbnail Image
Date
2011-10-27
Authors
Deza, M.
Heindel, Theodore
Battaglia, F.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Fluidized beds are being used in practice to gasify biomass to create producer gas, a flammable gas that can be used for process heating. However, recent literature has identified the need to better understand and characterize biomass fluidization hydrodynamics, and has motivated the combined experimental-numerical effort in this work. A cylindrical reactor is considered and a side port is introduced to inject air and promote mixing within the bed. Comparisons between the computational fluid dynamics (CFD) simulations with experiments indicate that three-dimensional simulations are necessary to capture the fluidization behavior of the more complex geometry. This paper considers the effects of increasing side port air flow on the homogeneity of the bed material in a 10.2 cm diameter fluidized bed filled with 500-600 μmground walnut shell particles. The use of two air injection ports diametrically opposed to each other is also modeled using CFD to determine their effects on fluidization hydrodynamics. Whenever possible, the simulations are compared to experimental data of time-average local gas holdup obtained using X-ray computed tomography. This study will show that increasing the fluidization and side port air flows contribute to a more homogeneous bed. Furthermore, the introduction of two side ports results in a more symmetric gas-solid distribution.

Comments

This article is from Journal of Fluids Engineering 133 (2011): 111302, doi:10.1115/1.4005136. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections