Document Type

Article

Publication Date

5-1-2000

Journal or Book Title

Journal of Applied Physics

Volume

87

Issue

9

First Page

5798

Last Page

5800

DOI

10.1063/1.372526

Abstract

Metal-bonded cobaltferrite composites are promising candidates for torquesensors and other magnetostrictive sensing and actuating applications. In the present study, the temperature dependence of the magnetomechanical effect in a ring-shape cobaltferrite composite under torsional strain has been investigated in the temperature range of −37 to 90 °C. The changes of external axial magnetic field were measured as a function of applied torque. Magnetomechanical sensitivity of ΔHext/Δτ=65 A N−1 m−2 was observed with a magnetomechanical hysteresis of Δτ=±0.62 N m at room temperature (22 °C). These were then measured as a function of temperature. Both decreased as the temperature increased throughout the entire range. The magnetomechanical hysteresis became negligible at temperatures higher than 60 °C, above which there was a linear change in external magnetic field with applied torque. These temperature dependences are explained by the changes of magnetostriction, anisotropy, spontaneous magnetization, and pinning of domain walls caused by the availability of increased thermal energy.

Comments

The following article appeared in Journal of Applied Physics 87 (2000): 5798 and may be found at http://dx.doi.org/10.1063/1.372526.

Rights

Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS