Document Type
Article
Publication Date
7-29-2011
Journal or Book Title
Physical Review E
Volume
84
First Page
011614
DOI
10.1103/PhysRevE.84.011614
Abstract
Three-dimensional phase-field simulations are employed to investigate rod-type eutectic growth morphologies in confined geometry. Distinct steady-state solutions are found to depend on this confinement effect with the rod array basis vectors and their included angle (α) changing to accommodate the geometrical constraint. Specific morphologies are observed, including rods of circular cross sections, rods of distorted (elliptical) cross sections, rods of peanut-shaped cross-sections, and lamellar structures. The results show that, for a fixed value of α>10∘, the usual (triangular) arrays of circular rods are stable in a broad range of spacings, with a transition to the peanut-shaped cross sectioned rods occurring at large spacings (above 1.5 times the minimum undercooling spacing λm), and the advent of rod eliminations at low spacings. Furthermore, a transition from rod to lamellar structures is observed for α<10∘ for the phase fraction of 10.5% used in the present paper.
Copyright Owner
American Physical Society
Copyright Date
2011
Language
en
File Format
application/pdf
Recommended Citation
Şerefoğlu, Melis; Napolitano, Ralph E.; and Plapp, Mathis, "Phase-field investigation of rod eutectic morphologies under geometrical confinement" (2011). Materials Science and Engineering Publications. 121.
https://lib.dr.iastate.edu/mse_pubs/121
Included in
Engineering Physics Commons, Materials Science and Engineering Commons, Statistical, Nonlinear, and Soft Matter Physics Commons
Comments
This article is from Physical Review E 84 (2011): 011614, doi:10.1103/PhysRevE.84.011614.