Document Type

Article

Publication Date

9-1993

Journal or Book Title

Journal of Materials Research

Volume

8

Issue

9

First Page

2149

Last Page

2161

DOI

10.1557/JMR.1993.2149

Abstract

The solidification processes for the compositions Bi2Sr2CaCu2Oy (2212) and Bi2Sr1.75Ca0.25CuOy (2201) were determined as a function of oxygen partial pressure. During solidification in argon, the superconducting phases were generally not observed to form for either composition. In both cases, the solidus is lowered to approximately 750 °C. Solidification of Bi2Sr1.75Ca0.25CuOy in Ar resulted in a divorced eutectic structure of Bi2Sr2−xCaxOy (22x) and Cu2O while solidification of Bi2Sr2CaCu2Oy in Ar resulted in a divorced eutectic structure of Bi2Sr3−xCaxOy (23x) and Cu2O. Solidification of Bi2Sr1.75Ca0.25CuOy in O2 resulted in large grains of 2201 interspersed with small regions containing the eutectic structure of 22x and CuO/Cu2O. Solidification of Bi2Sr2CaCu2Oy in partial pressures of 1%, 20%, and 100% oxygen resulted in multiphase samples consisting of 2212, 2201, some alkaline-earth cuprates, and both divorced eutectic structures found during solidification in Ar. For both compositions, these latter structures can be attributed to oxygen deficiencies present in the melt regardless of the overpressure of oxygen. These eutectic structures are unstable and convert into the superconducting phases during subsequent anneals in oxygen. The formation process of the 2212 phase during solidification from the melt was determined to proceed through an intermediate state involving the 2201 phase.

Comments

This article is from Journal of Materials Research 8 (1993): 2149-2161, doi: 10.1557/JMR.1993.2149. Posted with permission.

Copyright Owner

Materials Research Society

Language

en

File Format

application/pdf

Included in

Metallurgy Commons

Share

COinS