Document Type
Article
Publication Date
7-2014
Journal or Book Title
Physical Review B
Volume
90
First Page
1
Last Page
6
DOI
10.1103/PhysRevB.90.024105
Abstract
The local structure of K0.5Na0.5NbO3 is investigated using first-principles methods with an optimized special quasirandom structure (SQS). Through a comparison of the computed pair distribution functions with those from neutron powder diffraction data, the SQS approach demonstrates its ability to accurately capture the local structure patterns derived from the random distribution of K and Na on the perovskite A-site. Using these structures, local variations in Na-O interactions are suggested to be the driving force behind the R3c to Pm phase transition. A comparison between the SQS and a rocksalt structure shows the inability of the latter to account for the local variability present in a random solid solution. As such, the predictive nature of the SQS demonstrated here suggests that this approach may provide insight in understanding the properties of a wide range of bulk oxide alloys or solid solutions.
Copyright Owner
The American Physical Society
Copyright Date
2014
Language
en
File Format
application/pdf
Recommended Citation
Voas, Brian K.; Usher, Tedi-Marie; Liu, Xiaoming; Li, Shen; Jones, Jacob L.; Tan, Xiaoli; Cooper, Valentino; and Beckman, Scott P., "Special quasirandom structures to study the (K0.5Na0.5)NbO3 random alloy" (2014). Materials Science and Engineering Publications. 177.
https://lib.dr.iastate.edu/mse_pubs/177
Included in
Polymer and Organic Materials Commons, Process Control and Systems Commons, Structural Materials Commons
Comments
This article is from Physical Review B 90 (2014): 1, doi:10.1103/PhysRevB.90.024105. Posted with permission.