Document Type
Article
Publication Version
Published Version
Publication Date
2015
Journal or Book Title
Crystal Growth & Design
Volume
15
Issue
9
First Page
4701
Last Page
4712
DOI
10.1021/acs.cgd.5b01024
Abstract
Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn)2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and m = 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12)2 (1d), Azo(-C1-Im-C12)2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. Through irradiation with UV-light (320–366 nm) all compounds undergo trans–cis isomerization, which reverses under visible light (440 nm).
Copyright Owner
American Chemical Society
Copyright Date
2015
Language
en
File Format
application/pdf
Recommended Citation
Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; and Mudring, Anja, "Azobenzene-Based Organic Salts with Ionic Liquid and Liquid Crystalline Properties" (2015). Materials Science and Engineering Publications. 208.
https://lib.dr.iastate.edu/mse_pubs/208
Included in
Ceramic Materials Commons, Complex Fluids Commons, Other Materials Science and Engineering Commons
Comments
Reprinted (adapted) with permission from Cryst. Growth Des., 2015, 15 (9), pp 4701–4712. Copyright 2015 American Chemical Society.