Campus Units

Materials Science and Engineering, Physics and Astronomy, Ames Laboratory

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

11-10-2016

Journal or Book Title

Journal of Physical Chemistry C

Volume

120

Issue

44

First Page

25196

Last Page

25202

DOI

10.1021/acs.jpcc.6b06973

Abstract

Bi2Te3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown from stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi2Te3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. Correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi2Te3.

Comments

This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/acs.jpcc.6b06973. Posted with permission.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Published Version

Share

COinS