Campus Units

Aerospace Engineering, Materials Science and Engineering, Mechanical Engineering, Chemical and Biological Engineering, Physics and Astronomy, Ames Laboratory

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

2018

Journal or Book Title

arXiv

Abstract

We provide a critical atomistic evidence of pseudoelastic behavior in complex solid-solution BCC Mo-W-Ta-Ti-Zr alloy. Prior to this work, only limited single-crystal BCC solids of pure metals and quaternary alloys have shown pseudoelastic behavior at low temperatures and high strain rates. The deformation mechanisms investigated using classical molecular simulations under tensile-compressive loading reveal temperature-dependent pseudoelastic behavior aided by twinning during the loading-unloading cycle. The pseudoelasticity is found to be independent of loading directions with identical cyclic deformation characteristics during uniaxial loading. Additionally, temperature variation from 77 to 1500 K enhances the elastic strain recovery in the alloy.

Comments

This is a pre-print of the article Sharma, Aayush, Valery I. Levitas, Prashant Singh, Anup Basak, Ganesh Balasubramanian, and Duane D. Johnson. "Twinning-induced pseudoelastic behavior in (MoW)85(TaTi)7.5Zr7.5." arXiv preprint arXiv:1809.06822 (2018). Posted with permission.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Published Version

Share

COinS