Campus Units

Materials Science and Engineering, Mechanical Engineering

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

2019

Journal or Book Title

Industrial and Engineering Chemistry Research

DOI

10.1021/acs.iecr.8b06441

Abstract

Conventional fabrication of microfluidic channels/devices are faced with challenges such as single use channels and/or significant time consumption. We propose a flexible platform for fabricating microfluidic channels simply through indentation on a smart composite—the so-called ST3R (Stiffness tuning through thermodynamic relaxation) composite. The application of ST3R composite allows rapid fabrication of microfluidic channels by hand or with a prefabricated stamp, and precise prototyping of complex designs using a 2D plotter. Indenter geometry, applied stress, filler loading, and number of repeated indentations affect channel dimensions and/or shape. These channels further exhibit; i) Substantial improvement against swelling by organic solvent, in part due to the high modulus of the solidified metal network. ii) Channel reconfigurability by heating the solidified undercooled metals. ST3R composite slabs have the potential to serve as microfluidic ‘breadboards’, from which complex channels can be integrated in a flexible manner.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Industrial & Engineering Chemistry Research, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.iecr.8b06441.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Published Version

Share

COinS