Vitamin C and B3 as New Biomaterials to Alter Intestinal Stem Cells

Thumbnail Image
Date
2019-05-09
Authors
Qi, Yijun
Lohman, Jo
Bratlie, Kaitlin
Peroutka-Bigus, Nathan
Bellaire, Bryan
Wannemeuhler, Michael
Yoon, Kyoung-Jin
Barrett, Terrence
Wang, Qun
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bratlie, Kaitlin
Associate Professor
Person
Wang, Qun
Research Assistant Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMaterials Science and EngineeringVeterinary Microbiology and Preventive MedicineChemical and Biological EngineeringVeterinary Diagnostic and Production Animal Medicine
Abstract

Vitamin C (ascorbic acid) and vitamin B3 (niacin) have been extensively studied since the 20th century. In the area of stem cell biology, vitamin C has shown its direct impact towards homeostasis and epigenetic changes.1 Vitamin B3 aids in maintaining healthy intestinal homeostasis and reducing gut inflammation by participating in the rapamycin signaling pathway.2 In this study, vitamin C and vitamin B3 (600 and 1200 μg/ml) have been explored as potential new biomaterials to study their effects on four types of intestinal stem cells which are isolated from mice bearing different microbiota. We observed that C3H ASF and 129 ASF IL‐10 are more sensitive towards 600 μg/ml vitamin B3 and 1200 μg/ml vitamin C. The lowest growth rate and viability for all types of organoids was with 1200 μg/ml vitamin C. From qPCR analysis (quantitative Polymerase Chain Reaction analysis), MUC2 was upregulated for 129 ASF and C3H Conv when exposed to 600 μg/ml and 1200 μg/ml vitamin C. It suggests that large amounts of glycoprotein may be produced after adding high concentrations of vitamin C. Since inflammatory bowel disease has low level of MUC2, this finding may be helpful in restoring mucosal health by upregulating the MUC2 gene while altering patient's microbiota.3 These results are expected to have a positive translational impact because this bottom‐up strategy would be instrumental in developing Vitamin C and B3 based orally available therapeutic strategies and formula for advancing the fields of gastrointestinal regenerative medicine.

Comments

This is the peer-reviewed version of the following article: Qi, Y., J. Lohman, K. M. Bratlie, N. Peroutka-Bigus, B. Bellaire, M. Wannemuehler, K. J. Yoon, T. A. Barrett, and Q. Wang. "Vitamin C and B3 as New Biomaterials to Alter Intestinal Stem Cells." Journal of Biomedical Materials Research. Part A (2019) which has been published in final form at DOI: 10.1002/jbm.a.36715. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections