Campus Units

Materials Science and Engineering

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

6-6-2019

Journal or Book Title

ACS Applied Materials and Interfaces

DOI

10.1021/acsami.9b05898

Abstract

Lead-free potassium and sodium niobate (KNN) nanofiber webs with random and aligned configurations were prepared by electrospinning process from polymer-modified chemical solution. The crystallization process, structure, composition, dielectric, ferroelectric and piezoelectric properties of the nanofibers and nanofiber webs were investigated. Theoretical analysis and experimental results showed that the surface-induced heterogeneous nucleation resulted in the remarkable lower crystallization temperature for the KNN nanofibers with {100} orientation of the perovskite phase in contrast to the bulk KNN gel, and thus well-controlled chemical stoichiometry. Low dielectric loss, large electric polarization, and high piezoelectric performance were obtained in the nanofiber webs. In particular, the aligned nanofiber web exhibited further improved piezoelectric strain and voltage coefficients, and higher FOM than their thin film counterparts, promising for high performance electromechanical sensors and transducers applications.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acsami.9b05898. Posted with permission.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Published Version

Share

COinS