Field-induced domain interpenetration in tetragonal ferroelectric crystal

Thumbnail Image
Date
2004-01-01
Authors
Tan, Xiaoli
Shang, J. K.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tan, Xiaoli
Professor
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

Ferroelectric domain structures of a 〈001〉-oriented lead magnesium niobate–lead titanate tetragonal crystal were examined under cyclic bipolar electric fields. Complex patterns of orthogonal domain strips were found to emerge from a simple structure of parallel strips of 90°domains. Near the boundary between the two orthogonal sets of the domain strips, domains were forced to intersect, creating charged domain walls at the intersections. With continued electric cycling, direct impingement of individual domains resulted in domain interpenetration and fine domain cells in the boundary region. Away from the boundary region, initial domain walls were withdrawn and replaced by the walls along a different orientation, resulting in separate areas that each contained a single set of parallel strips of domains. A model based on 180° domain switching is suggested to explain interpenetration of the domains and the withdrawal of the original domain walls.

Comments

The following article appeared in Journal of Applied Physics 95 (2004): 635 and may be found at http://dx.doi.org/10.1063/1.1635970.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections