Campus Units

Materials Science and Engineering, Electrical and Computer Engineering, Microelectronics Research Center (MRC)

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

7-15-2020

Journal or Book Title

Angewandte Chemie International Edition

DOI

10.1002/anie.202008621

Abstract

Fabrication of bio‐templated metallic structures is limited by differences in properties, processing condition, packing, and material state. Herein, we demonstrate that using undercooled metal particles, differences in modulus and processing temperatures can be overcome. Similarly, adoption of autonomous processes like self‐filtration, capillary pressure and evaporative concentration leads to enhanced packing, stabilization (jamming) and point sintering with phase change to create solid metal replicas of complex bio‐based features. Differentiation of subtle differences between cultivars of the rose flower with reproduction over large areas shows that this BIOmimetic Metal Patterning (BIOMAP) is a versatile method to readily replicate biological features either as positive or negative reliefs irrespective of the substrate. Using rose petal patterns, we illustrate the versatility of bio‐templated mapping with undercooled metal particles at ambient conditions, and with unprecedented efficiency for metal structures.

Comments

This is the peer-reviewed version of the following article: Chang, Julia Jinling, Andrew Martin, Chuanshen Du, Alana Pauls, and Martin M. Thuo. "Heat‐Free Biomimetic Metal Molding on Soft Substrates." Angewandte Chemie International Edition (2020), which has been published in final form at DOI: 10.1002/anie.202008621. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.

Copyright Owner

WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Language

en

File Format

application/pdf

Available for download on Thursday, July 15, 2021

Published Version

Share

COinS