Campus Units

Materials Science and Engineering, Ames Laboratory, Chemistry

Document Type


Publication Version

Accepted Manuscript

Publication Date


Journal or Book Title

Journal of Colloid and Interface Science



First Page


Last Page





Emulsion polymerization is a versatile approach to produce different polymeric nanoparticle morphologies, which can be useful in a variety of applications. However, the detailed mechanism of the morphology formation is not entirely clear. We study the kinetics of nanoparticle morphology evolution during a seeded emulsion polymerization using both experimental and computational tools. Lightly crosslinked polystyrene seeds were first synthesized using dispersion polymerization. Then the seed particles were swollen in tert-butyl acrylate and styrene monomers, and subsequently polymerized into nanoparticles of dumbbell and multilobe morphologies. It was discovered that both the seed and final particle morphology were affected by the methanol concentration during the seed synthesis. Systematically adjusting the methanol amount will not only yield spherical seed particles of different size, but also dumbbell particles even without the second monomer polymerization. In addition to methanol concentration, morphology can be controlled by crosslinking density. The kinetics studies revealed an interesting transition from multilobe to dumbbell geometries during the secondary polymerization. Based on the results, a nucleation-growth model has been proposed to describe the morphology evolution and verification was offered by computer simulation. The key discovery is that nanoparticle morphology can be kinetically controlled by diffusion of the protrusions on the seed particles. The condition of seed synthesis and crosslinking density will drastically change the seed and final nanoparticle morphology.


This is a manuscript of an article published as Li, Yifan, Shensheng Chen, Serkan Demirci, Shiyi Qin, Zihao Xu, Emily Olson, Fei Liu, Devin Palm, Xin Yong, and Shan Jiang. "Morphology evolution of Janus dumbbell nanoparticles in seeded emulsion polymerization." Journal of Colloid and Interface Science 543 (2019): 34-42. DOI: 10.1016/j.jcis.2019.01.109. Posted with permission.

Copyright Owner

Elsevier Inc.



File Format


Published Version