Accelerating computational modeling and design of high-entropy alloys

Thumbnail Image
Date
2021-01-01
Authors
Singh, Rahul
Sharma, Aayush
Singh, Prashant
Balasubramanian, Ganesh
Johnson, Duane
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Johnson, Duane
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMechanical EngineeringPhysics and AstronomyMaterials Science and EngineeringChemical and Biological Engineering
Abstract

High-entropy alloys, with N elements and compositions {cν = 1,N} in competing crystal structures, have large design spaces for unique chemical and mechanical properties. Here, to enable computational design, we use a metaheuristic hybrid Cuckoo search (CS) to construct alloy configurational models on the fly that have targeted atomic site and pair probabilities on arbitrary crystal lattices, given by supercell random approximates (SCRAPs) with S sites. Our Hybrid CS permits efficient global solutions for large, discrete combinatorial optimization that scale linearly in a number of parallel processors, and linearly in sites S for SCRAPs. For example, a four-element, 128-site SCRAP is found in seconds—a more than 13,000-fold reduction over current strategies. Our method thus enables computational alloy design that is currently impractical. We qualify the models and showcase application to real alloys with targeted atomic short-range order. Being problem-agnostic, our Hybrid CS offers potential applications in diverse fields.

Comments

This is a post-peer-review, pre-copyedit version of an article published as Singh, Rahul, Aayush Sharma, Prashant Singh, Ganesh Balasubramanian, and Duane D. Johnson. "Accelerating computational modeling and design of high-entropy alloys." Nature Computational Science 1, no. 1 (2021): 54-61. The final authenticated version is available online at DOI: 10.1038/s43588-020-00006-7. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections