Campus Units
Industrial and Manufacturing Systems Engineering, Materials Science and Engineering, Ames Laboratory
Document Type
Article
Publication Version
Submitted Manuscript
Publication Date
12-9-2020
Journal or Book Title
Nano Letters
Volume
20
Issue
12
First Page
8773
Last Page
8780
DOI
10.1021/acs.nanolett.0c03641
Abstract
Multifunctional surfactants hold great potentials in catalysis, separation, and biomedicine. Highly active plasmonic-magnetic nanosurfactants are developed through a novel acid activation treatment of Au–Fe3O4 dumbbell nanocrystals. The activation step significantly boosts nanosurfactant surface energy and enables the strong adsorption at interfaces, which reduces the interfacial energy one order of magnitude. Mediated through the adsorption at the emulsion interfaces, the nanosurfactants are further constructed into free-standing hierarchical structures, including capsules, inverse capsules, and two-dimensional sheets. The nanosurfactant orientation and assembly structures follow the same packing parameter principles of surfactant molecules. Furthermore, nanosurfactants demonstrate the capability to disperse and encapsulate homogeneous nanoparticles and small molecules without adding any molecular surfactants. The assembled structures are responsive to external magnetic field, and triggered release is achieved using an infrared laser by taking advantage of the enhanced surface plasmon resonance of nanosurfactant assemblies. Solvent and pH changes are also utilized to achieve the cargo release.
Copyright Owner
American Chemical Society
Copyright Date
2020
Language
en
File Format
application/pdf
Recommended Citation
Liu, Fei; Li, Yifan; Huang, Yanhua; Tsyrenova, Ayuna; Miller, Kyle; Zhou, Lin; Qin, Hantang; and Jiang, Shan, "Activation and Assembly of Plasmonic-Magnetic Nanosurfactants for Encapsulation and Triggered Release" (2020). Materials Science and Engineering Publications. 393.
https://lib.dr.iastate.edu/mse_pubs/393
Supporting Information
Included in
Industrial Technology Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons
Comments
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.nanolett.0c03641. Posted with permission.