Document Type

Article

Publication Date

7-4-2011

Journal or Book Title

Optics Express

Volume

19

Issue

54

First Page

A786

Last Page

A792

DOI

10.1364/OE.19.00A786

Abstract

Very uniform 2 μm-pitch square microlens arrays (μLAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by ~100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the μLA is ~15 × 15 mm2, i.e., much larger than the ~3 × 3 mm2 OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by ~100%. Similarly, a 19 × 25 mm2μLA enhances the EL extracted from a 3 × 3 array of 2 × 2 mm2 OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a ~140% enhancement.

Comments

This article is from Optics Express 19 (2011): A786–A792, doi:10.1364/OE.19.00A786. Posted with permission.

Rights

This paper was published in Optics Express] and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.00A786. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Copyright Owner

Optical Society of America

Language

en

File Format

application/pdf

Share

COinS