Document Type

Article

Publication Date

2006

Journal or Book Title

Journal of Applied Physics

Volume

99

Issue

8

First Page

08R102

DOI

10.1063/1.2151793

Abstract

The temperature variation of magnetic anisotropy and coercive field of magnetoelastic manganese-substituted cobaltferrites (CoMnxFe2−xO4 with 0⩽x⩽0.6) was investigated. Major magnetic hysteresis loops were measured for each sample at temperatures over the range 10–400 K, using a superconducting quantum interference device magnetometer. The high-field regimes of the hysteresis loops were modeled using the law of approach to saturation equation, based on the assumption that at sufficiently high field only rotational processes remain, with an additional forced magnetization term that was linear with applied field. The cubic anisotropy constant K1 was calculated from the fitting of the data to the theoretical equation. It was found that anisotropy increases substantially with decreasing temperature from 400 to 150 K, and decreases with increasing Mn content. Below 150 K, it appears that even under a maximum applied field of 5 T, the anisotropy of CoFe2O4 and CoMn0.2Fe1.8O4 is so high as to prevent complete approach to saturation, thereby making the use of the law of approach questionable in these cases.

Comments

The following article appeared in Journal of Applied Physics 99 (2006): 08R102 and may be found at http://dx.doi.org/10.1063/1.2151793.

Rights

Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS