Campus Units

Natural Resource Ecology and Management

Document Type


Publication Version

Accepted Manuscript

Publication Date


Journal or Book Title

North American Journal of Fisheries Management




Visual identification of fish eggs is difficult and unreliable due to a lack of information on morphological egg characteristics of many species. We used random forests machine learning to predict the identity of genetically identified Bighead Carp (Hypophthalmichthys nobilis), Grass Carp (Ctenopharyngodon idella), and Silver Carp (H. molitrix) eggs based on egg morphometric and environmental characteristics. Family, genus, and species taxonomic level random forests were explored to assess variable performance and accuracy. Bighead Carp, Grass Carp, and Silver Carp egg characteristics were similar and difficult to distinguish from one another. When combined into a single invasive carp class, random forests were ≥97% accurate at identifying invasive carp eggs with a ≤5% false positive rate. Egg membrane diameter was the most important predictive variable, but the addition of ten other variables resulted in a 98% success rate for identifying invasive carp eggs from 26 other upper Mississippi River basin species. Our results reveal that a combination of morphometric and environmental measurements can be used to identify invasive carp eggs. Similar machine learning approaches could be used to identify eggs of other fishes. These results will help managers more easily and quickly assess invasive carp reproduction.


This is a manuscript of an article published as Camacho, Carlos A., Christopher J. Sullivan, Michael J. Weber, and Clay L. Pierce. "Morphological identification of Bighead Carp, Silver Carp, and Grass Carp eggs using random forests machine learning classification." North American Journal of Fisheries Management (2019). doi: 10.1002/nafm.10380.


Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.



File Format


Published Version