Campus Units

Natural Resource Ecology and Management

Document Type

Article

Publication Version

Published Version

Publication Date

2020

Journal or Book Title

Forests

Volume

11

Issue

2

First Page

213

DOI

10.3390/f11020213

Abstract

Research Highlights: Ongoing land-use change and climate change in wet tropical forests can potentially drive shifts in tree species composition, representing a change in individual species within a functional group, tropical evergreen trees. The impacts on the global carbon cycle are potentially large, but unclear. We explored the differential effects of species within this functional group, in comparison with the effects of climate change, using the Century model as a research tool. Simulating effects of individual tree species on biome-level biogeochemical cycles constituted a novel application for Century. Background and Objectives: A unique, long-term, replicated field experiment containing five evergreen tree species in monodominant stands under similar environmental conditions in a Costa Rican wet forest provided data for model evaluation. Our objectives were to gain insights about this forest’s biogeochemical cycles and effects of tree species within this functional group, in comparison with climate change. Materials and Methods: We calibrated Century, using long-term meteorological, soil, and plant data from the field-based experiment. In modeling experiments, we evaluated effects on forest biogeochemistry of eight plant traits that were both observed and modeled. Climate-change simulation experiments represented two climate-change aspects observed in this region. Results: Model calibration revealed that unmodeled soil processes would be required to sustain observed P budgets. In species-traits experiments, three separate plant traits (leaf death rate, leaf C:N, and allocation to fine roots) resulted in modeled biomass C stock changes of >50%, compared with a maximum 21% change in the climate-change experiments. Conclusions: Modeled ecosystem properties and processes in Century were sensitive to changes in plant traits and nutrient limitations to productivity. Realistic model output was attainable for some species, but unusual plant traits thwarted predictions for one species. Including more plant traits and soil processes could increase realism, but less-complex models provide an accessible means for exploring plant-soil-atmosphere interactions.

Comments

This article is published as Russell, Ann E., and William J. Parton. "Modeling the Effects of Global Change on Ecosystem Processes in a Tropical Rainforest." Forests 11, no. 2 (2020): 213. doi: 10.3390/f11020213.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

COinS