Campus Units
Natural Resource Ecology and Management
Document Type
Article
Publication Version
Published Version
Publication Date
8-2020
Journal or Book Title
Ecosphere
Volume
11
Issue
8
First Page
e03096
DOI
10.1002/ecs2.3096
Abstract
A fundamental question in forest insect ecology is the role of forest landscape structure, particularly the amount and spatial configuration of host tree species, in shaping the dynamics of recurring forest insect outbreaks. For forest tent caterpillar (FTC), independent studies do not converge on a singular conclusion, although all indicate that forest structure influences outbreak dynamics. These studies also vary in how they treat climate as a covariate. We evaluated the relative importance of host forest landscape composition and configuration, as well as climate, for their influence on FTC outbreak cycling in the twentieth century. We predicted that FTC outbreaks would exhibit greater synchrony and intensity within areas associated with higher abundance of host trees. We reconstructed FTC outbreaks from 1928 to 2006 using tree‐ring analysis within a well‐structured experimental landscape located in northwestern Ontario and northern Minnesota. Time‐series clustering and spatial nonparametric covariance were used to determine whether similarities in time series and patterns in spatial synchrony corresponded with land management history. Using constrained ordination, we compared statistical properties of outbreak time series to landscape variables representing host abundance, forest configuration, and climate. We found no evidence of climatic effects at the scale of this study, but a significant albeit small influence of landscape structure on outbreak dynamics. Outbreaks were more synchronous and more cyclic within managed zones containing a greater relative abundance of aspen and other hardwood host tree species, compared with the more conifer‐dominated Wilderness area. Yet, we also observed asynchronous outbreak dynamics across the study area, such that correlations with slower‐changing forest landscape variables varied starkly among outbreak pulses. Consequently, the strength of relationship between landscape variables and FTC outbreak patterns varied strongly through time—a result that may explain why short‐term studies yield conclusions that are at odds with one another. Our results speak to the importance of long time series, contrasting landscape structure, use of multivariate methods, and controlling for climatic variation when investigating the effects of forest landscape structure on the cyclic‐eruptive spatial dynamics for forest defoliators.
Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Language
en
File Format
application/pdf
Recommended Citation
Robert, Louis‐Etienne; Sturtevant, Brian R.; Kneeshaw, Daniel; James, Patrick M. A.; Fortin, Marie‐Josée; Wolter, Peter T.; Townsend, Philip A.; and Cooke, Barry J., "Forest landscape structure influences the cyclic‐eruptive spatial dynamics of forest tent caterpillar outbreaks" (2020). Natural Resource Ecology and Management Publications. 357.
https://lib.dr.iastate.edu/nrem_pubs/357
Included in
Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Management Commons, Natural Resources Management and Policy Commons, Spatial Science Commons
Comments
This article is published as Robert, Louis‐Etienne, Brian R. Sturtevant, Daniel Kneeshaw, Patrick MA James, Marie‐Josée Fortin, Peter T. Wolter, Philip A. Townsend, and Barry J. Cooke. "Forest landscape structure influences the cyclic‐eruptive spatial dynamics of forest tent caterpillar outbreaks." Ecosphere 11, no. 8 (2020): e03096. doi: 10.1002/ecs2.3096.