Linear and cyclic sucrose reaction products, their preparation and their use

Thumbnail Image
Date
1999-03-16
Authors
Robyt, John
Makerjea, Rupendra
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Iowa State University Research Foundation, Inc.
The Iowa State University Research Foundation (ISURF) seeks to protect the intellectual property (including new discoveries, technologies, or creative works) of the university's students & faculty which is continuously created through research and other undertakings. It seeks to manage, protect, and own all intellectual property on behalf of the university. The Iowa State University Research Foundation was created in 1938.
Journal Issue
Is Version Of
Versions
Series
Department
Iowa State University Research Foundation, Inc.
Abstract

Sucrose ester and ether products, useful as food or beverage bulking agents, reduced calorie sweeteners, fat replacement agents, stabilizing agents, thickening agents and emulsifying agents; adhesives; biodegradable plastics and films; sizing agents for paper and textiles; ethical pharmaceuticals and new fibers are prepared by using a two-phase reaction system in which sucrose is dissolved in an alkaline, aqueous solution and an acidic reagent such as a bifunctional acid dichloride or epoxide is added to the sucrose in a water-immiscible organic solvent. Several types of products are produced: water-insoluble sucrose ester (ether) copolymers; water-soluble sucrose ester (ether) copolymers; sucrose ester (ether) dimers; and intramolecular, cyclic sucrose esters (ethers). These products can be further varied by using different kinds of acid dichlorides or epoxides that contain different kinds of functional groups. The reaction proceeds at the interface of the water/organic solvent solutions whereby there is imparted a specificity that restricts the reaction to the 6 and 6' primary alcohol groups of sucrose. The reactions can be selected for each of the four basic types of products by controlling the various reaction parameters.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Collections