Campus Units

Physics and Astronomy, Mathematics, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

1987

Journal or Book Title

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films

Volume

5

Issue

4

First Page

1040

Last Page

1044

DOI

10.1116/1.574181

Abstract

Despite the awareness that island‐forming chemisorption is often kinetically limited and intrinsically nonequilibrium, there is little sophisticated analysis of the corresponding island structure or diffracted intensity. Here we analyze a model where species irreversibly and immobilely chemisorb (commensurately) from a precursor source, with distinct rates for island nucleation (chemisorptionin an empty region) and growth (chemisorption at island perimeters), the latter rates being larger. Specifically, we consider the formation of one‐dimensional double‐spaced islands, and two‐dimensional checkerboard C(2×2) islands on a square lattice. In both cases (permanent) domain boundaries form between out‐of‐phase islands. We analyze scaling of the saturation coverage, a characteristiclinear island dimension, spatial correlations, etc., with the ratio of growth to nucleation rates. The structure of individual islands, and of the saturation domain boundary ‘‘network’’ are elucidated. The corresponding diffracted intensity exhibits significant interference at superlattice beams, and diminution at integral order beams as saturation is approached.

Comments

This article is published as Evans, Jo W., and R. S. Nord. "Structure and diffracted intensity in a model for irreversible island‐forming chemisorption with domain boundaries." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (1987): 1040-1044, doi:10.1116/1.574181. Posted with permission.

Copyright Owner

American Physical Society

Language

en

File Format

application/pdf

Share

COinS