Campus Units

Physics and Astronomy, Mathematics, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

2016

Journal or Book Title

Physical Review B

Volume

93

Issue

16

First Page

165411

DOI

10.1103/PhysRevB.93.165411

Abstract

A discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessed as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.

Comments

This article is published as Zhao, Renjie, James W. Evans, and Tiago J. Oliveira. "Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis." Physical Review B 93, no. 16 (2016): 165411, doi:10.1103/PhysRevB.93.165411. Posted with permission.

Copyright Owner

American Physical Society

Language

en

File Format

application/pdf

Share

COinS