Campus Units

Physics and Astronomy, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

1-15-2018

Journal or Book Title

Physical Review B

Volume

97

First Page

035135

DOI

10.1103/PhysRevB.97.035135

Abstract

Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

Comments

This article is published as Schütt, Michael, Peter P. Orth, Alex Levchenko, and Rafael M. Fernandes. "Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature." Physical Review B 97, no. 3 (2018): 035135. DOI: 10.1103/PhysRevB.97.035135. Posted with permission.

Copyright Owner

American Physical Society

Language

en

File Format

application/pdf

Share

COinS