Measurement of two-particle correlations with respect to second- and third-order event planes in Au + Au collisions at √sNN=200 GeV

Thumbnail Image
Date
2019-05-01
Authors
Adare, A.
Hill, John
Hotvedt, Nels
Kempel, Todd
Lajoie, John
Lebedev, Alexandre
Lee, S. H.
Ogilvie, Craig
Patel, Milap
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ogilvie, Craig
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Physics and Astronomy
Abstract

We present measurements of azimuthal correlations of charged hadron pairs in root s(NN) = 200 GeV Au + Au collisions for the trigger and associated particle transverse-momentum ranges of 1 < p(T)(t) < 10 GeV/c and 0.5 < p(T)(a) < 10 GeV/c. After subtraction of an underlying event using a model that includes higher-order azimuthal anisotropy v(2), v(3,) and v(4), the away-side yield of the highest trigger-p(T)(p(T)(t) > 4 GeV/c) correlations is suppressed compared with that of correlations measured in p + p collisions. At the lowest associated particle p(T)(0.5 < p(T)(a) < 1 GeV/c), the away-side shape and yield are modified relative to those in p + p collisions. These observations are consistent with the scenario of radiative-jet energy loss. For the low-p(T) trigger correlations (2 < p(T)(t) < 4 GeV/c), a finite away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle Psi(2) and Psi(3). The angular correlations show an asymmetry when selecting the sign of the difference between the trigger-particle azimuthal angle and the Psi(2) event plane. This asymmetry and the measured suppression of the pair yield out-of-plane is consistent with a path-length-dependent energy loss. No Psi(3) dependence can be resolved within experimental uncertainties.

Comments

This article is published as Adare, A., S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander et al. "Measurement of two-particle correlations with respect to second-and third-order event planes in Au+ Au collisions at s NN= 200 GeV." Physical Review C 99, no. 5 (2019): 054903. DOI: 10.1103/PhysRevC.99.054903. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections